Li–Yorke sensitive and weak mixing dynamical systems

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

observational dynamical systems

چکیده در این پایاننامه ابتدا فضاهای متریک فازی را به صورت مشاهدهگرایانه بررسی میکنیم. فضاهای متریک فازی و توپولوژی تولید شده توسط این متریک معرفی شدهاند. سپس بر اساس فضاهایی که در فصل اول معرفی شدهاند آشوب توپولوژیکی، مینیمالیتی و مجموعههای متقاطع در شیوههای مختلف بررسی شده- اند. در فصل سوم مفهوم مجموعههای جاذب فازی به عنوان یک مفهوم پایهای در سیستمهای نیم-دینامیکی نسبی، تعریف شده است. ...

15 صفحه اول

Fluid Mixing and Dynamical Systems

We consider problems of mixing in fluid flows and show how the methods of dynamical systems may be used in the analysis of these problems. In particular, we consider the problem of passive scalar mixing in incompressible fluid flows and decompose the problem into three stages as follows. The first problem is to express the desired quantities (reactant consumption rate .... ) in terms of statist...

متن کامل

Weak-hamiltonian Dynamical Systems

A big-isotropic structure E is an isotropic subbundle of T M ⊕ T * M , endowed with the metric defined by pairing. The structure E is said to be the explicit expression of X H and of the integrability conditions of E under the regularity condition dim(pr T * M E) = const. We show that the port-controlled, Hamiltonian systems (in particular, constrained mechanics) [1, 4] may be interpreted as we...

متن کامل

jordan c-dynamical systems

in the first chapter we study the necessary background of structure of commutators of operators and show what the commutator of two operators on a separable hilbert space looks like. in the second chapter we study basic property of jb and jb-algebras, jc and jc-algebras. the purpose of this chapter is to describe derivations of reversible jc-algebras in term of derivations of b (h) which are we...

15 صفحه اول

Topological Weak Mixing and Quasi-bohr Systems

A minimal dynamical system (X,T ) is called quasi-Bohr if it is a nontrivial equicontinuous extension of a proximal system. We show that if (X,T ) is a minimal dynamical system which is not weakly mixing then some minimal proximal extension of (X, T ) admits a nontrivial quasi-Bohr factor. (In terms of Ellis groups the corresponding statement is: AG′ = G implies weak mixing.) The converse does ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Difference Equations and Applications

سال: 2017

ISSN: 1023-6198,1563-5120

DOI: 10.1080/10236198.2017.1304545